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Boundary relations and Weyl families

Basic notations
H a Hilbert space with inner product (·, ·).
S a closed symmetric linear relation in H with arbitrary defect numbers.

• The following definitions and facts are taken from [DHMS2006]:

Definition
With H a Hilbert space a linear relation Γ : H2 7→ H2 is a boundary relation for S∗, if:

(G1) dom Γ is dense in S∗ and

(f ′, g)H − (f , g ′)H = (h′, k)H − (h, k ′)H, (1.1)

holds for every {f̂ , ĥ}, {ĝ , k̂} ∈ Γ;

(G2) Γ is maximal in the sense that if {ĝ , k̂} ∈ H2 ×H2 satisfies (1.1) for every {f̂ , ĥ} ∈ Γ, then

{ĝ , k̂} ∈ Γ.

The condition (G1) can be interpreted as an abstract Green’s identity.
Associate with Γ the following linear relations which are not necessarily closed:

Γ0 =
{
{f̂ , h} : {f̂ , ĥ} ∈ Γ, ĥ = {h, h′}

}
,

Γ1 =
{
{f̂ , h′} : {f̂ , ĥ} ∈ Γ, ĥ = {h, h′}

}
.

(1.2)
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Boundary relations as unitary mappings between Krein spaces

Consider (H2, JH) as a Krĕın space with scalar product[( f

f ′

)
,
( g

g ′

)]
J

:= i(f ′, g)− i(f , g ′)

determined on H2 = H× H by JH :=

(
0 −iIH

iIH 0

)
.

Now the condition (G1) can be interpreted as follows:
Γ is an isometric multivalued mapping from the Krĕın space (H2, JH) to the Krĕın space (H2, JH):

(JH f̂ , ĝ)H2 = (JHĥ, k̂)H2 , {f̂ , ĥ}, {ĝ , k̂} ∈ Γ.

The maximality condition (G2) guarantees that a boundary relation Γ is a unitary relation from
(H2, JH) to (H2, JH):

Γ−1 = Γ[∗].

In particular, Γ is closed and linear.
Converse is also true:

Proposition
Let Γ be a unitary relation from the Krĕın space (H2, JH) to the Krĕın space (H2, JH). Then:

Γ boundary relation for S∗ ⇐⇒ ker Γ = S.
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Weyl families and γ-fields
Denote

Nλ(T ) = ker (T − λ), N̂λ(T ) = { {f , λf } ∈ T : f ∈ Nλ(T ) }.

Definition
The Weyl family M(·) of S corresponding to the boundary relation Γ : H2 7→ H2 is defined by

M(λ) := Γ(N̂λ(T )), λ ∈ C \ R, i.e.,

M(λ) =
{

ĥ ∈ H2 : {f̂λ, ĥ} ∈ Γ, f̂λ = {f , λf } ∈ H2
}
,

If M(·) is operator-valued, then it is called the Weyl function of S corresponding to Γ.

Definition
The γ-field γ(·) of S corresponding to the boundary relation Γ : H2 →H2 is defined by

γ(λ) :=
{
{h, f } ∈ H× H : {f̂λ, ĥ} ∈ Γ, f̂λ ∈ H2

}
,

where f̂λ = {f , λf }, ĥ = {h, h′}, and λ ∈ C \ R. Moreover, γ̂(λ) stands for

γ̂(λ) :=
{
{h, f̂λ} ∈ H× H2 : {h, f } ∈ γ(λ)

}
.

γ-field is a single-valued mapping from Γ0(N̂λ(T )) = domM(λ) onto Nλ(T ), T = dom Γ (T
dense in S∗).
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Nevanlinna families

A family of linear relations M(λ), λ ∈ C \ R, in a Hilbert space H is called a Nevanlinna family if:

(i) M(λ) is maximal dissipative for every λ ∈ C+ (resp. max. accumulative for every λ ∈ C−);

(ii) M(λ)∗ = M(λ̄), λ ∈ C \ R;

(iii) for some, and hence for all, µ ∈ C+(C−) the operator family (M(λ) + µ)−1(∈ [H]) is
holomorphic for all λ ∈ C+(C−).

By the maximality condition, M(λ), λ ∈ C \ R, is closed. The class of all Nevanlinna families in a

Hilbert space is denoted by R̃(H).

Nevanlinna families M(λ) ∈ R̃(H) admit the following decomposition to the operator part Ms (λ),
λ ∈ C \ R, and constant multi-valued part M∞:

M(λ) = Ms (λ)⊕M∞, M∞ = {0} ×mulM(λ).

Here Ms (λ) is a Nevanlinna family of densely defined operators in H	mulM(λ).

S. Hassi (University of Vaasa) Abstract boundary mappings; recent developments & history Timisoara, October 12, 2012 5 / 19



Realization theorem for Nevanlinna families

Two boundary relations Γ(j) : (H(j))2 →H2, j = 1, 2, are said to be unitarily equivalent if there is
a unitary operator U : H(1) → H(2) such that

Γ(2) =

{{(
Uf
Uf ′

)
,

(
h
h′

)}
:

{(
f
f ′

)
,

(
h
h′

)}
∈ Γ(1)

}
. (1.3)

If the boundary relations Γ(1) and Γ(2) are connected by (1.3) and Sj = ker Γ(j), Tj = dom Γ(j),
j = 1, 2, then

S2 = US1U−1, T2 = UT1U−1.

The boundary relation Γ : H2 7→ H2 is minimal, if

H = Hmin := span {Nλ(T ) : λ ∈ C+ ∪ C− }.

Theorem (DHMS2006)
Let Γ : H2 →H2 be a boundary relation for S∗. Then the corresponding Weyl family M(·)
belongs to the class R̃(H).

Conversely, if M(·) belongs to the class R̃(H) then there exists (up to unitary equivalence) a
unique minimal boundary relation whose Weyl function coincides with M(·).
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Unitary relations in Krein spaces

Recall that a linear relation T : (H1, J1)→ (H2, J2) is unitary if

T−1 = T [∗]. (1.4)

A unitary relation is automatically closed. The definition (1.4) and the following proposition go
back to Shmulyan 1976; see [DHMS06].

Proposition
Let T be a unitary relation from (H1, J1) to (H2, J2). Then

domT = ranT [∗], ranT = domT [∗],

and
ker T = (domT )[⊥], mulT = (ranT )[⊥].

Moreover, domT is closed if and only if ranT is closed.

A unitary relation T is an operator if and only if ranT = H.

Corollary
Let T be a unitary relation from (H1, J1) to (H2, J2). Then the following statements are
equivalent:

(i) ranT = H;

(ii) T is a bounded linear operator (with domT = (ker T )[⊥]).
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Unitary boundary triplets of bounded type
The notion of the ordinary boundary triplet was extended by Derkach and Malamud in 1995 by
weakening the surjectivity assumption on Γ.

Definition
Let S be a closed symmetric operator in a Hilbert space H with equal deficiency indices and let T
be a linear relation in H such that S ⊂ T ⊂ closT = S∗. Then the triplet {H, Γ0, Γ1}, where H
is a Hilbert space and Γ = {Γ0, Γ1} is a single-valued linear mapping from T to H2, is said to be
a boundary triplet of bounded type, or generalized boundary triplet, for S∗, if:

(B1) Green’s identity (1.1) holds for all f̂ = {f , f ′}, ĝ = {g , g ′} ∈ T ;

(B2) ran Γ0 = H;

(B3) A0 := ker Γ0 is a selfadjoint relation in H.

The term “boundary triplet of bounded type” is used here to indicate that the Weyl function
M(λ) corresponding to the boundary triplet in Definition ?? is bounded, as is stated in the next
proposition.

Proposition
Let {H, Γ0, Γ1} be a boundary triplet of bounded type for S∗. Then:

(i) T = A0 +̂ N̂λ(T ), where N̂λ(T ) = N̂λ(S∗) ∩ T is dense in N̂λ(S∗) for every λ ∈ C \ R;

(ii) clos Γ1(A0) = H and ran Γ = H2;

(iii) γ̂(·) is a B(H, N̂λ)-valued function, γ(·) is a B(H,Nλ)-valued function, and M(·) is a
B(H)-valued function; each of these functions is holomorphic on C \ R.
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Unitary boundary triplets of bounded type (continued)
Let R[H] denote the class of bounded Nevanlinna functions, characterized by the conditions

(i) M(·) : C \ R→ B(H) is holomorphic;

(ii) M(λ)∗ = M(λ̄) for all λ ∈ ρ(A0);

(iii) Im M(λ)Im (λ) ≥ 0 for all λ ∈ ρ(A0).

Denote by Rs [H] the class of strict Nevanlinna operator-valued functions with values in B(H),
that is

M ∈ Rs [H]⇔ M ∈ R[H] and 0 6∈ σp(ImM(λ)) for all λ ∈ C \ R,

and denote by Ru [H] the class of all uniformly strict functions in R[H], which satisfy

0 ∈ ρ(Im M(λ)) for all λ ∈ ρ(A0).

The next proposition shows that the class Rs [H] of bounded strict Nevanlinna functions in fact
characterizes boundary triplets of bounded type; see [DHMS06] for further details.

Proposition
The Weyl function M(·) corresponding to a boundary triplet of bounded type {H, Γ0, Γ1} belongs
to the class Rs [H]. Conversely, every Rs [H]-function is the Weyl function of some boundary
triplet of bounded type {H, Γ0, Γ1}.

Proposition
The Weyl function M(·) corresponding to an ordinary boundary triplet {H, Γ0, Γ1} belongs to the
class Ru [H]. Conversely, every Ru [H]-function is the Weyl function of an ordinary boundary
triplet {H, Γ0, Γ1}.
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Isometric relations in Krein spaces
A linear relation T from (H1, J1) to (H2, J2) is said to be isometric if

T−1 ⊂ T [∗], (1.5)

or equivalently,
(J2f ′, g ′)H2

= (J1f , g)H1
for all {f , f ′}, {g , g ′} ∈ T . (1.6)

The closure of an isometric relation is automatically isometric.

Lemma
Let T be an isometric relation from (H1, J1) to (H2, J2). Then

domT ⊂ ranT [∗], ranT ⊂ domT [∗],

and
ker T ⊂ ker (closT ) ⊂ (domT )[⊥], mulT ⊂ mul (closT ) ⊂ (ranT )[⊥].

An isometric relation with dense range is necessarily single-valued and so is its closure; i.e.,
closable. The next result is now easy to establish, cf. [DHMS2012]; also proved by Sorjonen 1980.

Proposition
Let T be a linear relation from (H1, J1) to (H2, J2). Then the following statements are equivalent:

(i) T−1 = T [∗];

(ii) T−1 ⊂ T [∗], ker T = (domT )[⊥], and ranT = domT [∗];

(iii) T−1 ⊂ T [∗], mulT = (ranT )[⊥], and domT = ranT [∗].
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Isometric relations in Krein spaces (continued)

Corollary
Let T be a linear relation from (H1, J1) to (H2, J2). Then the following statements are equivalent:

(i) T−1 = T [∗] and ranT = H2;

(ii) T−1 ⊂ T [∗], (domT )[⊥] = ker T , and ranT = H2;

(iii) T−1 ⊂ T [∗], (ker T )[⊥] = domT , and ranT = H2.

In particular, one has:

Corollary
A triplet {H, Γ0, Γ1} is an ordinary boundary triplet for S∗ if and only if Γ = {Γ0, Γ1} is an
isometric relation with ker Γ = S and dense domain in S∗, such that

ran Γ = H2.

The last corollary is a slightly weaker characterization for ordinary boundary triplets than the one
obtained in [DHMS06].
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Isometric boundary mappings

Let Γ be an isometric relation from the Krĕın space (H2, JH) to the Krĕın space (H2, JH). Then
the abstract Green’s identity

(f ′, g)H − (f , g ′)H = (h′, k)H − (h, k ′)H, {f̂ , ĥ}, {ĝ , k̂} ∈ Γ, (1.7)

holds, where
f̂ = {f , f ′}, ĝ = {g , g ′} ∈ H2, ĥ = {h, h′}, k̂ = {k, k ′} ∈ H2.

Since Γ is isometric one has ker Γ ⊂ (dom Γ)[⊥] and mul Γ ⊂ (ran Γ)[⊥]. Note that these
inclusions need not hold as equalities, if Γ is not unitary.
In this general context an isometric relation Γ : H2 →H2 can be also viewed as an isometric
boundary relation for the closure of T = dom Γ.

Associate with Γ the component mappings Γ0 and Γ1 as before. Then

A0 := ker Γ0, A1 := ker Γ1

are contained in dom Γ and, in general, they are non-closed symmetric extensions of ker Γ.

To every isometric relation Γ : H2 →H2 one can associate the Weyl family in a similar way as in
the unitary case:

M(λ) := ΓN̂λ(T ), λ ∈ C,

where N̂λ(T ) = { f̂λ : f̂λ = {fλ, λfλ} ∈ dom Γ}.
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Isometric boundary mappings (continued)
Let ĥ ∈ M(λ) and k̂ ∈ M(µ) with λ, µ ∈ C, then there exist f̂λ, ĝµ ∈ T , such that

{h̃, f̂λ}, {k̂, ĝµ} ∈ T . Green’s identity (1.1) then gives

(h′, k)H − (h, k ′)H = (λ− µ̄)(fλ, gµ)H. (1.8)

In particular, with µ = λ̄ (1.8) implies that

M(λ) ⊂ M(λ̄)∗, λ ∈ C.

With µ = λ ∈ C \ R (1.8) implies that, for instance, ker (Γ0 � N̂λ(T )) = {0}. Therefore,

γ̂(λ) = (Γ0 � N̂λ(T ))−1

is a single-valued mapping from domM(λ) onto N̂λ(T ) and, thus, as in the unitary case one can
define the γ-field as the first component of the mapping γ̂(λ), λ ∈ C \ R. Furthermore, (1.8)
shows that M(λ) is dissipative (accumulative) for λ ∈ C+ (for λ ∈ C−, respectively). However,
observe that by definition M(λ) ⊂ ran Γ, while in general M(λ)∗ 6⊂ ran Γ.
The next result gives an analytic criterion for an isometric relation Γ : H2 →H2 to be a boundary
relation for S∗ which is based on the properties of the Weyl function M.

Theorem
The linear relation Γ : H2 7→ H2 is a unitary boundary relation for S∗ if and only if the following
conditions hold:

(i) dom Γ is dense in S∗;

(ii) Γ is closed and isometric from (H2, JH) to (H2, JH);

(iii) ran (M(λ) + λ) is dense in H for some (and, hence, for all) λ ∈ C+ and for some (and,
hence, for all) λ ∈ C−.
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Quasi-boundary triplets

The following definition can be seen as a modification of the notion of a generalized boundary
triplet introduced by V. Derkach and M. Malamud in 1995.

Definition (Behrndt and Langer (2007))
Let S be a closed symmetric relation in a Hilbert space H with equal deficiency indices. Then
{H, Γ0, Γ1} is said to be a quasi-boundary triplet for S∗ if Γ0 and Γ1 are linear mappings defined
on a dense subspace T = dom Γ of S∗ with values in H such that

(Q1) Green’s identity (1.7) holds for all f̂ = {f , f ′}, ĝ = {g , g ′} ∈ T ;

(Q2) the range of Γ := {Γ0, Γ1} is dense in H2;

(Q3) A0 := ker Γ0 is a selfadjoint linear relation in H.

Thus Γ is isometric with dense range by (Q1) and (Q2). The condition (Q3) implies that
A0 ⊂ T = dom Γ, and this yields the identity

S = ker Γ = T∗.

An application of Corollary 14 shows that for a quasi-boundary triplet the following statements
are equivalent:

(i) dom Γ = S∗;

(ii) ran Γ = H2;

(iii) Γ is a bounded unitary operator.
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Quasi-boundary triplets (continued)

The following result gives a complete description for the class of quasi-boundary triplets,
describes their closures, and expresses their connection to boundary triplets of bounded type via
simple (isometric) triangular transformations on the boundary space H×H.

Theorem
Let {H, Γ0, Γ1} be a boundary triplet of bounded type for S∗ and let E be a symmetric densely
defined operator in H. Then the transform(

Γ̃0

Γ̃1

)
=

(
I 0
E I

)(
Γ0

Γ1

)
(1.9)

is a quasi-boundary triplet for S∗. Furthermore, Γ̃ := {Γ̃0, Γ̃1} in (1.9) is closed if and only if E is

a closed symmetric operator in H, in particular, the closure of Γ̃ is given by (1.9) with E replaced
by its closure E∗∗.
Conversely, if Γ̃ is a quasi-boundary triplet for S∗ then there exists a boundary triplet of bounded
type Γ = {Γ0, Γ1} and a densely defined symmetric operator E in H such that Γ̃ is given by (1.9).

Corollary
The class of quasi-boundary triplets coincides with the class of isometric boundary triplets whose
Weyl function is of the form

M̃(λ) = E + M(λ), (1.10)

with E a symmetric densely defined operator in H and M ∈ Rs [H].
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Calkin’s approach

The concept of boundary relation was introduced in 2006 by V.Derkach, S.H, M. Malamud, and
H. de Snoo. Only recently we have found out that in the case that the symmetric operator is
densely defined and the boundary mapping is a (single-valued) operator, the concept of boundary
relation is equivalent to Calkin’s notion of reduction operator published in 1939. In the more
general context of symmetric relations his definition can be restated in the following form.

Definition
Let S be a closed symmetric relation in a Hilbert space H and let M be a Hilbert space. A linear
operator Γ : S∗ →M is called a reduction operator for S∗ if

(R1) dom Γ is dense in S∗;

(R2) Γ is closed;

(R3) there is a signature operator J in M (J = J∗ = J−1), such that

(H⊕ H⊕M)	 Γ = {{f ′ ⊕−f ⊕ iJΓf̂ } : f̂ := {f , f ′} ∈ dom Γ}.

The lefthand side in the defining identity in (R3) denotes the orthogonal complement of the
graph of Γ in H× H×M. This identity gives rise to the abstract form of Green’s (or Lagrange’s)
identity:

(f ′, g)H − (f , g ′)H = i(JΓf̂ , Γĝ )M, f̂ , ĝ ∈ dom Γ, (1.11)

since any element in Γ has the form {f , f ′, Γf̂ }, f̂ ∈ dom Γ ⊂ S∗.
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Calkin’s approach (continued)
The Hilbert space M together with its signature operator J gives rise to a Krĕın space (M, J)
with canonical symmetry J, whereas the product space H2 = H×H with JH as above gives rise to
a Krĕın space (H2, JH) with canonical symmetry JH. With these canonical symmetries Green’s
identity (1.11) can be rewritten as

(JH f̂ , ĝ) = (JΓf̂ , Γĝ), f̂ , ĝ ∈ dom Γ,

in other words, the operator Γ from (H2, JH) to (M, J) is isometric; cf. (1.6). In fact, it follows
from (R2) and (R3) that the operator Γ is unitary. In particular, ran Γ is dense in M. Using
Proposition 6 one obtains ker Γ = (dom Γ)[⊥] = (S∗)[⊥] = (S [⊥])[⊥]. Hence, ker Γ = S . For the
next result, use Corollary 7.

Corollary (Calkin 1939)
Let Γ be a reduction operator for S∗. Then the following statements are equivalent:

(i) Γ is bounded unitary operator;

(ii) dom Γ = S∗;

(iii) ran Γ = M.

Let S be a closed symmetric relation in a Hilbert space H and let Γ be a reduction operator for
S∗. If A is a proper extension of S, such that A ⊂ dom Γ, then Θ := Γ(A) is a subspace of M
such that Θ ⊂ ran Γ. Conversely, if Θ is a subspace of M such that Θ ⊂ ran Γ, then the formula

AΘ := Γ−1Θ (1.12)

determines a proper extension of A, such that AΘ ⊂ dom Γ. The correspondence in (1.12)
simplifies under the conditions of Corollary 21.
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Calkin’s approach (continued)

Theorem (Calkin 1939)
Assume that S∗ has a bounded reduction operator Γ. Then the formula (1.12) establishes a
one-to-one correspondence between all linear subspaces Θ of M and all proper extensions AΘ of
A. Moreover,

(i) AΘ is closed ⇔ Θ is closed;

(ii) AΘ is symmetric ⇔ Θ is neutral in (M, J);

(iii) AΘ is maximal symmetric ⇔ Θ is maximal neutral in (M, J);

(iv) AΘ is self-adjoint ⇔ Θ is hyper-maximal neutral in (M, J).

In general reduction operators need not be bounded. If the reduction operator Γ is unbounded
then there are still maximal symmetric (not necessarily selfadjoint) extensions A of S, such that
A ⊂ dom Γ and, hence, A = AΘ for some Θ ⊂M; see Theorem 4.3 in Calkin 1939. However,
there are also maximal symmetric extensions Ã of S , such that Ã ∩ dom Γ = S ; see Theorem 4.6
in Calkin 1939.
For the connection of the present paper with Calkin’s work one assumes that in Definition 20
M = H×H with a Hilbert space H so that (M, JH) is a Krĕın space with the canonical
symmetry JH given by

JH =

(
0 −iIH

iIH 0

)
.

For a detailed discussion on Calkin’s main results on unbounded reduction operators we refer to
the paper by S.H. & H. Wietsma (2012).
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